Incremental Training with All-Pass Transforms

Center for Language and Speech Processing John McDonough and William Byrne The Johns Hopkins University

May 16, 2000

Speaker Compensation

- The performance of current automatic speech recognition (ASR) algorithms degrades significantly in the presence of inter-speaker differences
- Speaker compensation attempts to acount for or eliminate these differences and thereby improve ASR performance
- *Speaker normalization* transforms the original cepstral features to match the speaker-independent model:

$$\hat{x_i} = T(x_i)$$
 (normalization)

Speaker adaptation transforms the original cepstral means to match the features of a given speaker:

$$\hat{\mu}_k = A^{(s)}\mu_k + b^{(s)}$$
 (adaptation)

The All-Pass Transform

- The all-pass transform (APT) is a linear transformation of (e.g., one or nine). cepstral coefficients specified by very few free parameters
- segment of speech (ICSLP '98). associated with the short-time Fourier transform of a In normalization, the APT warps the frequency axis
- In adaptation, the APT transforms the cepstral means of an HMM (ICASSP '99).
- APT adaptation can be efficiently incorporated into HMM parameter estimation to achieve matched conditions on training and test (EuroSpeech '99).

APT Spectral Transformation

Original (thin line) and transformed (thick line) short-term spectra regenerated from cepstra 0-14.

Note that the higher formants are shifted *down*, while the lowest formant is shifted *up*.

The Sine-Log All-Pass Transform

Define the Sine-Log All-Pass Transform (SLAPT) as

$$Q(z) = z \exp F(z)$$

where

$$F(z) = \sum_{m=1}^{M} \alpha_m F_m(z) \text{ for } \alpha_1, \dots, \alpha_M \in \mathbb{R},$$

$$F_m(z) = j \pi \sin\left(\frac{m}{j}\log z\right)$$

- rational form. The SLAPT shares all characteristics of RAPT, save for its
- The SLAPT, however, is more amenable for computation.

SLAPT Characteristics

Upon applying

$$\sin z = \frac{1}{2j} \left(e^{jz} - e^{-jz} \right)$$

it follows

$$F_k(z) = \frac{\pi}{2} \left(z^k - z^{-k} \right)$$

which is a better form for computation.

Parameterizing the unit circle as $z = e^{j\omega}$ provides

$$Q(e^{j\omega}) = \exp j \left(\omega + \pi \sum_{k=1}^{K} \alpha_k \sin \omega k \right)$$

Center for Language and Speech Processing The Johns Hopkins University

Initialize APT Parameters Initialize Gaussian Mixtures Initialize Mixture Weights Transform SAT Means Transform SAT Means Transform SAT Means $\{\hat{\mu}_k^{(S)}\}$ $\{\hat{\mu}_k^{(2)}\}$ $\{\hat{\mu}_{k}^{(1)}\}$ **SAT Schematic** Forward-Backward Iteration Forward-Backward Iteration Forward-Backward Iteration $\{\tilde{q}_{\kappa}^{(S)}\}$ $\{\widetilde{q}_k^{(2)}\}$ $\{\tilde{q}_{k}^{(1)}\}$ $\{\widetilde{\mu}_{k}^{(2)}\}$ $\{\widetilde{\mu}_{k}^{(1)}\}$ $\{\tilde{\mu}_k^{(S)}\}$ Re-estimate APT Parameters Re-estimate APT Parameters Re-estimate APT Parameters P(1) A⁽²⁾ A(S) Re-estimate SAT Means and Re-estimate Mixture Weights Variances {q_k} $\{\mu_k, \sigma_k^2\}$ SAT Gaussian Mixtures SAT Mixture Weights

Center for Language and Speech Processing The Johns Hopkins University

Multiple/Optimal Regression Classes

- In speaker adaptation, the Gaussian components of an HMM are often partitioned into mutually-exclusive sets or regression classes
- estimated for each regression class. An unique speaker-dependent transformation is then
- In earlier work, the regression classes were typically obtained with binary divisive clustering or based on phonetic similarity.

Homewood Incremental Training (HIT)

HMM training techniques (submitted, ICASSP '00). The unique characteristics of the APT mandate the use of special

- Incrementally add speaker-dependent modeling detail to single mixture model.
- 2. Detail may be added by increasing the number of regression classes, or by the number of parameters per transform, or both.
- 3. We have developed useful heuristics for regression class splitting.
- 4. Modeling detail is transferred to multiple-mixture model in a computationally efficient manner.

The Mississippi State Training Set

- Speech recognizer was trained on a subset of Switchboard Corpus training set, dubbed MsTrain
- Approximately 800 conversations total;
- Approximately 50 hours of speech;
- Approximately 400 speakers of each gender.
- MsTrain set used in estimating a "plain vanilla" speaker-independent model:

Speaker Normalization Results

- Feature normalization was tested in combination with MLLR.
- APT parameters were estimated with a simple GMM.

Feature	Full-M	Full-Matrix MLLR
Normalization	No	Yes
None	40.6	36.3
RAPT-1	38.8	34.8
RAPT-5	39.4	35.0
SLAPT-1	38.8	34.7
SLAPT-5	39.6	35.3

In all experiments, training and test conditions were matched.

APT Rapid Adaptation Results

- Sparsity of parameters in APT make it ideal for use with limited enrollment data.
- Unsupervised parameter estimation was performed using various amounts of enrollment data.

5 sec.	10 sec.	30 sec.	60 sec.	2.5 min.	Baseline	Enrollment Set
38.8	38.7	38.5	38.3	38.5		RAPT-1
37.9	37.8	37.6	37.4	37.3		RAPT-9
38.6	38.6	38.3	38.2	38.4	41.5	SLAPT-1
38.2	38.0	37.7	37.5	37.4	5	RAPT-1 RAPT-9 SLAPT-1 SLAPT-9
45.5	40.1	37.9	37.5	37.1		Full-Matrix MLLR

All cases used a single, global transform.

APT Adaptation Results

The results of several speech recognition experiments using unsupervised APT adaptation are tabulated below.

35.6		24
36.1		16
36.1		8
36.3		4
37.0		2
37.3	38.2	1
.6	40.6	Baseline
RAPT-9	RAPT-1	No. Regression Classes
rror Rate	% Word Error Rate	

- The use of more regression classes and more parameters per transform results in ever increasing WER reductions.
- The best WER reduction is 5.0% absolute.

MLLR Results

yields no additional improvement. Increasing the number of regression classes under MLLR

4	2	—	Baseline	No. RegClasses
37.3	36.3	36.9	40.6	% Word Error Rate

The best WER reduction with MLLR is 4.3%, significantly less than that obtained with APT-based adaptation.

Center for Language and Speech Processing The Johns Hopkins University

Conclusions

- reduction in WER on a large vocabulary conversational An APT-based speaker adaptation system yields an 5.0% speech recognition task
- The comparable gain with MLLR is 4.3%.
- robustly estimated in the face of limited enrollment data. Unlike conventional MLLR, the parameters of the APT can be
- The Homewood Extensions are now available at ftp://ftp.clsp.jhu.edu/pub/the

